Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
J Med Chem ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592014

RESUMO

We report two novel prodrug Pt(IV) complexes with bis-organosilane ligands in axial positions: cis-dichloro(diamine)-trans-[3-(triethoxysilyl)propylcarbamate]platinum(IV) (Pt(IV)-biSi-1) and cis-dichloro(diisopropylamine)-trans-[3-(triethoxysilyl) propyl carbamate]platinum(IV) (Pt(IV)-biSi-2). Pt(IV)-biSi-2 demonstrated enhanced in vitro cytotoxicity against colon cancer cells (HCT 116 and HT-29) compared with cisplatin and Pt(IV)-biSi-1. Notably, Pt(IV)-biSi-2 exhibited higher cytotoxicity toward cancer cells and lower toxicity on nontumorigenic intestinal cells (HIEC6). In preclinical mouse models of colorectal cancer, Pt(IV)-biSi-2 outperformed cisplatin in reducing tumor growth at lower concentrations, with reduced side effects. Mechanistically, Pt(IV)-biSi-2 induced permanent DNA damage independent of p53 levels. DNA damage such as double-strand breaks marked by histone gH2Ax was permanent after treatment with Pt(IV)-biSi-2, in contrast to cisplatin's transient effects. Pt(IV)-biSi-2's faster reduction to Pt(II) species upon exposure to biological reductants supports its superior biological response. These findings unveil a novel strategy for designing Pt(IV) anticancer prodrugs with enhanced activity and specificity, offering therapeutic opportunities beyond conventional Pt drugs.

2.
Hum Gene Ther ; 35(1-2): 5-8, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38062731

RESUMO

The year 2023 marks the 20th anniversary of the British Society for Gene and Cell Therapy (BSGCT). In these 20 years, the field of gene and cell therapy has gone from promising strategy to clinical reality. This report describes the history, objectives, organization, and activities of BSGCT to advance research and practice of gene and cell therapy in the United Kingdom.


Assuntos
Terapia Genética , Sociedades Médicas , Sociedades Médicas/história , Reino Unido , Aniversários e Eventos Especiais , Terapia Baseada em Transplante de Células e Tecidos
3.
J Community Health ; 49(3): 535-548, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38141149

RESUMO

We aimed to evaluate the feasibility of an online self-sampling pilot intervention for HIV testing addressed to gay, bisexual, and other men who have sex with men (GBMSM) and trans women (TW) users of dating apps in Spain. The website https://www.testate.org/ was designed to offer self-sampling kits for HIV testing and online consultation of the results. It was advertised on gay dating apps. Participants requested the delivery of a saliva self-sampling kit by mail and a postage-paid envelope to send the sample to the reference laboratory. An anonymous acceptability survey was conducted. The cascade of care was estimated. From November 2018 to December 2021, 4623 individual users ordered self-sampling kits, 3097 returned an oral fluid sample to the reference laboratory (67.5% return rate). 87 reactive results were detected. 76 were confirmed to be HIV-positive, we estimated an HIV prevalence of 2.45% (95% CI 1.9-3.0%). 100% of those referred to specialized care are in treatment. 45.8% of participants took more than one test. 23 incident cases were detected among repeat testers, of which 20 were confirmed. The estimated incidence was 1.00 confirmed case per 100 individual-years of follow-up. 98.01% of participants would recommend it to a friend. The most identified advantages were convenience and privacy. We demonstrated that the online offer of oral self-sampling kits for HIV detection and reporting results online among GBMSM and TW users of dating apps is feasible. The intervention counted with a high acceptability and high efficacy (in terms of reactivity, confirmation and linkage to care rates).


Assuntos
Infecções por HIV , Minorias Sexuais e de Gênero , Masculino , Humanos , Feminino , Homossexualidade Masculina , Infecções por HIV/diagnóstico , Infecções por HIV/epidemiologia , Espanha/epidemiologia , Comportamento Sexual
4.
J Thorac Dis ; 15(10): 5549-5558, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37969294

RESUMO

Background: Preservation solutions may be used intraoperatively during coronary artery bypass grafting (CABG) to flush and preserve vein grafts. The aim of this study is to evaluate the effect of DuraGraft, an endothelial damage inhibitor (EDI) preservation solution on major adverse cardiac events (MACEs) after CABG. Methods: We conducted an observational, prospective, longitudinal, single-center study that included patients who underwent isolated CABG. The cohort treated with an EDI was matched 1:1 with a control group treated with conventional vein preservation, and matching was adjusted for possible confounding factors through propensity score (PS) matching. Three years follow-up was conducted, and the occurrence of MACE [defined as all cause-death, acute coronary syndrome (ACS), and new unplanned revascularization] was analyzed using Kaplan-Meier method. Results: The study included 180 patients, 90 in each group. There were no significant differences in baseline characteristics across study groups. The EDI group had a significantly better event-free survival at 3 years (89% vs. 78%, log-rank test P=0.035), with an incidence rate ratio of 0.41 [95% confidence interval (CI): 0.16-0.96]. In the pre-specified subgroups analysis, the use of an EDI was associated with a significantly better event-free survival in diabetic patients (log-rank test P=0.041) and those with two or more saphenous vein grafts (log-rank test P=0.015). Conclusions: The utilization of an EDI for vein flushing and storage after vein harvest in CABG procedures has been shown to significantly decrease the incidence of MACE at 3 years post-surgery. This protective effect is particularly notable in diabetic patients and in individuals who have multiple vein grafts.

5.
Biomedicines ; 11(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37893074

RESUMO

The blood-brain barrier (BBB) is the specialised microvasculature system that shields the central nervous system (CNS) from potentially toxic agents. Attempts to develop therapeutic agents targeting the CNS have been hindered by the lack of predictive models of BBB crossing. In vitro models mimicking the human BBB are of great interest, and advances in induced pluripotent stem cell (iPSC) technologies and the availability of reproducible differentiation protocols have facilitated progress. In this study, we present the efficient differentiation of three different wild-type iPSC lines into brain microvascular endothelial cells (BMECs). Once differentiated, cells displayed several features of BMECs and exhibited significant barrier tightness as measured by trans-endothelial electrical resistance (TEER), ranging from 1500 to >6000 Ωcm2. To assess the functionality of our BBB models, we analysed the crossing efficiency of adeno-associated virus (AAV) vectors and peptide-conjugated antisense oligonucleotides, both currently used in genetic approaches for the treatment of rare diseases. We demonstrated superior barrier crossing by AAV serotype 9 compared to serotype 8, and no crossing by a cell-penetrating peptide-conjugated antisense oligonucleotide. In conclusion, our study shows that iPSC-based models of the human BBB display robust phenotypes and could be used to screen drugs for CNS penetration in culture.

6.
Plant Biotechnol J ; 21(12): 2683-2697, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37749961

RESUMO

Higher dietary intakes of flavonoids may have a beneficial role in cardiovascular disease prevention. Additionally, supplementation of branched-chain amino acids (BCAAs) in vegan diets can reduce risks associated to their deficiency, particularly in older adults, which can cause loss of skeletal muscle strength and mass. Most plant-derived foods contain only small amounts of BCAAs, and those plants with high levels of flavonoids are not eaten broadly. Here we describe the generation of metabolically engineered cisgenic tomatoes enriched in both flavonoids and BCAAs. In this approach, coding and regulatory DNA elements, all derived from the tomato genome, were combined to obtain a herbicide-resistant version of an acetolactate synthase (mSlALS) gene expressed broadly and a MYB12-like transcription factor (SlMYB12) expressed in a fruit-specific manner. The mSlALS played a dual role, as a selectable marker as well as being key enzyme in BCAA enrichment. The resulting cisgenic tomatoes were highly enriched in Leucine (21-fold compared to wild-type levels), Valine (ninefold) and Isoleucine (threefold) and concomitantly biofortified in several antioxidant flavonoids including kaempferol (64-fold) and quercetin (45-fold). Comprehensive metabolomic and transcriptomic analysis of the biofortified cisgenic tomatoes revealed marked differences to wild type and could serve to evaluate the safety of these biofortified fruits for human consumption.


Assuntos
Aminoácidos de Cadeia Ramificada , Solanum lycopersicum , Humanos , Aminoácidos de Cadeia Ramificada/metabolismo , Solanum lycopersicum/genética , Flavonoides , Leucina , Frutas/genética , Frutas/metabolismo , Isoleucina/metabolismo
7.
Cryst Growth Des ; 23(8): 5658-5670, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37547875

RESUMO

The synthesis of ZSM-5 zeolites by hydrothermal crystallization of protozeolitic nanounits functionalized with amphiphilic organosilanes of different chain length (Cn-N(CH3)2-(CH2)3-Si-(OCH3)3, n = 10, 14, 18 and 22) has been investigated. Well-developed dendritic nanoarchitectures were achieved when using C14 and C18 organosilanes, exhibiting a radial and branched pattern of zeolitic nanounits aggregates. In contrast, although C10 and C22 organosilanes led to materials with hierarchical porosity, they lack of dendritic features. These differences have been linked to the formation of an amorphous mesophase at the gel preparation stage for the C14 and C18 samples, in which the surfactant micelles are covalently connected with the protozeolitic nanounits through siloxane bonds. The presence of the dendritic nanostructure positively impacts both the textural and catalytic properties of ZSM-5 zeolite. Thus, ZSM-5 (C14) and ZSM-5 (C18) samples exhibit the largest contribution of mesoporosity in terms of both surface area and pore volume. On the other hand, when tested as catalysts in the aldol condensation of furfural with cyclopentanone, which is an interesting reaction for the production of sustainable jet fuels, the highest catalytic activity is attained over the dendritic ZSM-5 materials due to their remarkable accessibility and balanced Brønsted/Lewis acidity.

8.
Hum Mol Genet ; 32(20): 2950-2965, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37498175

RESUMO

Structural, functional and molecular cardiac defects have been reported in spinal muscular atrophy (SMA) patients and mouse models. Previous quantitative proteomics analyses demonstrated widespread molecular defects in the severe Taiwanese SMA mouse model. Whether such changes are conserved across different mouse models, including less severe forms of the disease, has yet to be established. Here, using the same high-resolution proteomics approach in the less-severe Smn2B/- SMA mouse model, 277 proteins were found to be differentially abundant at a symptomatic timepoint (post-natal day (P) 18), 50 of which were similarly dysregulated in severe Taiwanese SMA mice. Bioinformatics analysis linked many of the differentially abundant proteins to cardiovascular development and function, with intermediate filaments highlighted as an enriched cellular compartment in both datasets. Lamin A/C was increased in the cardiac tissue, whereas another intermediate filament protein, desmin, was reduced. The extracellular matrix (ECM) protein, elastin, was also robustly decreased in the heart of Smn2B/- mice. AAV9-SMN1-mediated gene therapy rectified low levels of survival motor neuron protein and restored desmin levels in heart tissues of Smn2B/- mice. In contrast, AAV9-SMN1 therapy failed to correct lamin A/C or elastin levels. Intermediate filament proteins and the ECM have key roles in cardiac function and their dysregulation may explain cardiac impairment in SMA, especially since mutations in genes encoding these proteins cause other diseases with cardiac aberration. Cardiac pathology may need to be considered in the long-term care of SMA patients, as it is unclear whether currently available treatments can fully rescue peripheral pathology in SMA.


Assuntos
Neurônios Motores , Atrofia Muscular Espinal , Humanos , Camundongos , Animais , Neurônios Motores/metabolismo , Desmina/genética , Desmina/metabolismo , Elastina/genética , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/patologia , Terapia Genética , Modelos Animais de Doenças , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
9.
Gene Ther ; 30(12): 812-825, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37322133

RESUMO

Spinal muscular atrophy (SMA) is a neuromuscular disease particularly characterised by degeneration of ventral motor neurons. Survival motor neuron (SMN) 1 gene mutations cause SMA, and gene addition strategies to replace the faulty SMN1 copy are a therapeutic option. We have developed a novel, codon-optimised hSMN1 transgene and produced integration-proficient and integration-deficient lentiviral vectors with cytomegalovirus (CMV), human synapsin (hSYN) or human phosphoglycerate kinase (hPGK) promoters to determine the optimal expression cassette configuration. Integrating, CMV-driven and codon-optimised hSMN1 lentiviral vectors resulted in the highest production of functional SMN protein in vitro. Integration-deficient lentiviral vectors also led to significant expression of the optimised transgene and are expected to be safer than integrating vectors. Lentiviral delivery in culture led to activation of the DNA damage response, in particular elevating levels of phosphorylated ataxia telangiectasia mutated (pATM) and γH2AX, but the optimised hSMN1 transgene showed some protective effects. Neonatal delivery of adeno-associated viral vector (AAV9) vector encoding the optimised transgene to the Smn2B/- mouse model of SMA resulted in a significant increase of SMN protein levels in liver and spinal cord. This work shows the potential of a novel codon-optimised hSMN1 transgene as a therapeutic strategy for SMA.


Assuntos
Infecções por Citomegalovirus , Atrofia Muscular Espinal , Camundongos , Animais , Recém-Nascido , Humanos , DNA Complementar/metabolismo , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Transgenes , Modelos Animais de Doenças , Fatores de Transcrição/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
10.
Int J Exp Pathol ; 104(4): 154-176, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37177842

RESUMO

Rare diseases collectively exact a high toll on society due to their sheer number and overall prevalence. Their heterogeneity, diversity, and nature pose daunting clinical challenges for both management and treatment. In this review, we discuss recent advances in clinical applications of gene therapy for rare diseases, focusing on a variety of viral and non-viral strategies. The use of adeno-associated virus (AAV) vectors is discussed in the context of Luxturna, licenced for the treatment of RPE65 deficiency in the retinal epithelium. Imlygic, a herpes virus vector licenced for the treatment of refractory metastatic melanoma, will be an example of oncolytic vectors developed against rare cancers. Yescarta and Kymriah will showcase the use of retrovirus and lentivirus vectors in the autologous ex vivo production of chimeric antigen receptor T cells (CAR-T), licenced for the treatment of refractory leukaemias and lymphomas. Similar retroviral and lentiviral technology can be applied to autologous haematopoietic stem cells, exemplified by Strimvelis and Zynteglo, licenced treatments for adenosine deaminase-severe combined immunodeficiency (ADA-SCID) and ß-thalassaemia respectively. Antisense oligonucleotide technologies will be highlighted through Onpattro and Tegsedi, RNA interference drugs licenced for familial transthyretin (TTR) amyloidosis, and Spinraza, a splice-switching treatment for spinal muscular atrophy (SMA). An initial comparison of the effectiveness of AAV and oligonucleotide therapies in SMA is possible with Zolgensma, an AAV serotype 9 vector, and Spinraza. Through these examples of marketed gene therapies and gene cell therapies, we will discuss the expanding applications of such novel technologies to previously intractable rare diseases.


Assuntos
Agamaglobulinemia , Imunodeficiência Combinada Severa , Humanos , Doenças Raras/genética , Doenças Raras/terapia , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Terapia Genética , Agamaglobulinemia/genética , Agamaglobulinemia/terapia
11.
Biol Open ; 12(5)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199309

RESUMO

Cell recruitment is a process by which a differentiated cell induces neighboring cells to adopt its same cell fate. In Drosophila, cells expressing the protein encoded by the wing selector gene, vestigial (vg), drive a feed-forward recruitment signal that expands the Vg pattern as a wave front. However, previous studies on Vg pattern formation do not reveal these dynamics. Here, we use live imaging to show that multiple cells at the periphery of the wing disc simultaneously activate a fluorescent reporter of the recruitment signal, suggesting that cells may be recruited without the need for their contact neighbors be recruited in advance. In support of this observation, when Vg expression is inhibited either at the dorsal-ventral boundary or away from it, the activation of the recruitment signal still occurs at a distance, suggesting that Vg expression is not absolutely required to send or propagate the recruitment signal. However, the strength and extent of the recruitment signal is clearly compromised. We conclude that a feed-forward, contact-dependent cell recruitment process is not essential for Vg patterning, but it is necessary for robustness. Overall, our findings reveal a previously unidentified role of cell recruitment as a robustness-conferring cell differentiation mechanism.


Assuntos
Proteínas de Drosophila , Drosophila , Proteínas Nucleares , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/metabolismo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
12.
PLoS One ; 18(4): e0284816, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093844

RESUMO

Growth Arrest-Specific 1 (Gas1) is a pleiotropic protein with different functions, in the adult kidney Gas1 acts as an endogenous inhibitor of cell proliferation but it is also necessary for the maintenance and proliferation of Renal Progenitor Cells (RPC) during early development, thus it fulfills important functions in the adult kidney. However, it is not known whether or not Gas1 is expressed during postnatal development, a critical stage for renal maturation. For this reason, the main objective of this work was to characterize the expression pattern of Gas1 in the different regions of the kidney by immunofluorescence and Western blot analysis during the postnatal development of the rat. We found that Gas1 is present and has a differential expression pattern in the various regions of the nephron during postnatal development. We observed that the highest levels of expression of Gas1 occur in the adult, however, Gas1 is also expressed in RPC and interestingly, the expression of RPC markers such as the Neural cell adhesion molecule (NCAM) and Cluster of differentiation 24 (CD24) were found to have an inverse pattern of expression to Gas1 (decreases as the kidney matures) during postnatal renal maturation, this indicates a role for Gas1 in the regulation of renal cell proliferation at this stage of development.


Assuntos
Proteínas de Ciclo Celular , Néfrons , Ratos , Animais , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Néfrons/metabolismo , Células-Tronco/metabolismo , Células Epiteliais/metabolismo , Proteínas Ligadas por GPI/metabolismo
13.
Phytopathology ; 113(9): 1677-1685, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36998120

RESUMO

Whitefly-transmitted viruses are one of the biggest threats to tomato (Solanum lycopersicum) growing worldwide. Strategies based on the introgression of resistance traits from wild relatives are promoted to control tomato pests and diseases. Recently, a trichome-based resistance characterizing the wild species Solanum pimpinellifolium was introgressed into a cultivated tomato. An advanced backcross line (BC5S2) exhibiting the presence of acylsugar-associated type IV trichomes, which are lacking in cultivated tomatoes, was effective at controlling whiteflies (Hemiptera: Aleyrodidae) and limiting the spread of whitefly-transmitted viruses. However, at early growth stages, type IV trichome density and acylsugar production are limited; thus, protection against whiteflies and whitefly-transmitted viruses remains irrelevant. In this work, we demonstrate that young BC5S2 tomato plants feeding-punctured by the zoophytophagous predator Nesidiocoris tenuis (Hemiptera: Miridae) displayed an increase (above 50%) in type IV trichome density. Acylsugar production was consistently increased in N. tenuis-punctured BC5S2 plants, which was more likely associated with upregulated expression of the BCKD-E2 gene related to acylsugar biosynthesis. In addition, the infestation of BC5S2 plants with N. tenuis effectively induced the expression of defensive genes involved in the jasmonic acid signaling pathway, resulting in strong repellence to Bemisia tabaci and attractiveness to N. tenuis. Thus, through preplant release of N. tenuis in tomato nurseries carried out in some integrated pest management programs, type IV trichome-expressing plants can be prepared to control whiteflies and whitefly-transmitted viruses at early growth stages. This study emphasizes the advantage of reinforcing constitutive resistance using defense inducers to guarantee robust protection against pests and transmitted viruses.


Assuntos
Hemípteros , Solanum lycopersicum , Solanum , Animais , Tricomas , Doenças das Plantas , Produtos Agrícolas
14.
mSphere ; 8(2): e0047822, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36883813

RESUMO

Enrichment of adherent-invasive Escherichia coli (AIEC) has been consistently detected in subsets of inflammatory bowel disease (IBD) patients. Although some AIEC strains cause colitis in animal models, these studies did not systematically compare AIEC with non-AIEC strains, and causal links between AIEC and disease are still disputed. Specifically, it remains unclear whether AIEC shows enhanced pathogenicity compared to that of commensal E. coli found in the same ecological microhabitat and if the in vitro phenotypes used to classify strains as AIEC are pathologically relevant. Here, we utilized in vitro phenotyping and a murine model of intestinal inflammation to systematically compare strains identified as AIEC with those identified as non-AIEC and relate AIEC phenotypes to pathogenicity. Strains identified as AIEC caused, on average, more severe intestinal inflammation. Intracellular survival/replication phenotypes routinely used to classify AIEC positively correlated with disease, while adherence to epithelial cells and tumor necrosis factor alpha production by macrophages did not. This knowledge was then applied to design and test a strategy to prevent inflammation by selecting E. coli strains that adhered to epithelial cells but poorly survived/replicated intracellularly. Two E. coli strains that ameliorated AIEC-mediated disease were subsequently identified. In summary, our results show a relationship between intracellular survival/replication in E. coli and pathology in murine colitis, suggesting that strains possessing these phenotypes might not only become enriched in human IBD but also contribute to disease. We provide new evidence that specific AIEC phenotypes are pathologically relevant and proof of principle that such mechanistic information can be therapeutically exploited to alleviate intestinal inflammation. IMPORTANCE Inflammatory bowel disease (IBD) is associated with an altered gut microbiota composition, including expansion of Proteobacteria. Many species in this phylum are thought to contribute to disease under certain conditions, including adherent-invasive Escherichia coli (AIEC) strains, which are enriched in some patients. However, whether this bloom contributes to disease or is just a response to IBD-associated physiological changes is unknown. Although assigning causality is challenging, appropriate animal models can test the hypothesis that AIEC strains have an enhanced ability to cause colitis in comparison to other gut commensal E. coli strains and to identify bacterial traits contributing to virulence. We observed that AIEC strains are generally more pathogenic than commensal E. coli and that bacterial intracellular survival/replication phenotypes contributed to disease. We also found that E. coli strains lacking primary virulence traits can prevent inflammation. Our findings provide critical information on E. coli pathogenicity that may inform development of IBD diagnostic tools and therapies.


Assuntos
Colite , Infecções por Escherichia coli , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Doenças Inflamatórias Intestinais/microbiologia , Inflamação/patologia
15.
Phytopathology ; 113(7): 1347-1359, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36690608

RESUMO

Tomato yellow leaf curl disease (TYLCD) causes severe damage to tomato crops in warm regions of the world, and is associated with infections of several whitefly (Bemisia tabaci)-transmitted single-stranded (ss)DNA begomoviruses (genus Begomovirus, family Geminiviridae). The most widespread begomovirus isolates associated with TYLCD are those of the type strain of the Tomato yellow leaf curl virus species, known as Israel (TYLCV-IL). The Ty-1 gene is widely used in commercial tomato cultivars to control TYLCV-IL damage, providing resistance to the virus by restricting viral accumulation and tolerance to TYLCD by inhibiting disease symptoms. However, several reports suggest that TYLCV-IL-like isolates are adapting to the Ty-1 gene and are causes of concern for possibly overcoming the provided control. This is the case with TYLCV-IL IS76-like recombinants that have a small genome fragment acquired by genetic exchange from an isolate of Tomato yellow leaf curl Sardinia virus, another begomovirus species associated with TYLCD. Here we show that TYLCV-IL IS76-like isolates partially break down the TYLCD-tolerance provided by the Ty-1 gene and that virulence differences might exist between isolates. Interestingly, we demonstrate that mixed infections with an isolate of the crinivirus (genus Crinivirus, family Closteroviridae) species Tomato chlorosis virus (ToCV), an ssRNA virus also transmitted by B. tabaci and emerging worldwide in tomato crops, boosts the breakdown of the TYLCD-tolerance provided by the Ty-1 gene either with TYLCV-IL IS76-like or canonical TYLCV-IL isolates. Moreover, we demonstrate the incorporation of the Ty-2 gene in Ty-1-commercial tomatoes to restrict (no virus or virus traces, no symptoms) systemic infections of recombinant TYLCV-IL IS76-like and canonical TYLCV-IL isolates, even in the presence of ToCV infections, which provides more robust and durable control of TYLCD.


Assuntos
Begomovirus , Crinivirus , Solanum lycopersicum , Begomovirus/genética , Crinivirus/genética , Doenças das Plantas
16.
Plant Dis ; 107(2): 473-479, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35771117

RESUMO

Seed transmission can be of considerable relevance to the dissemination of plant viruses in nature and for their prevalence and perpetuation. Long-distance spread of isolates of the begomovirus species Tomato leaf curl New Delhi virus (genus Begomovirus, family Geminiviridae) has recently occurred from Asia to the Middle East and the Mediterranean Basin. Here, we investigated the possible transmission by melon (Cucumis melo L.) seeds of a tomato leaf curl New Delhi virus (ToLCNDV) isolate of the "Spain" strain widely distributed in the Mediterranean area as an alternative mechanism for long-distance spread. PCR amplification detection of ToLCNDV in floral parts and mature seeds of melon plants reveals that this virus is seedborne. "Seedborne" is defined as the ability of a virus to be carried through seeds, which does not necessarily lead to transmission to the next generation. Treatment with a chemical disinfectant significantly reduced the detectable virus associated with melon seeds, suggesting ToLCNDV contamination of the external portion of the seed coat. Also, when the internal fraction of the mature seed (seed cotyledons + embryo) was analyzed by quantitative PCR amplification, ToLCNDV was detectable at low levels, suggesting the potential for viral contamination or infection of the internal portions of seed. However, grow-out studies conducted with melon progeny plants germinated from mature seeds collected from ToLCNDV-infected plants and evaluated at early (1-leaf) or at late (20-leaf) growth stages did not support the transmission of ToLCNDV from seeds to offspring.


Assuntos
Begomovirus , Cucurbitaceae , Doenças das Plantas , Sementes
18.
J Nanobiotechnology ; 20(1): 502, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457046

RESUMO

Dental caries is the major biofilm-mediated oral disease in the world. The main treatment to restore caries lesions consists of the use of adhesive resin composites due to their good properties. However, the progressive degradation of the adhesive in the medium term makes possible the proliferation of cariogenic bacteria allowing secondary caries to emerge. In this study, a dental adhesive incorporating a drug delivery system based on L-arginine-containing mesoporous silica nanoparticles (MSNs) was used to release this essential amino acid as a source of basicity to neutralize the harmful acidic conditions that mediate the development of dental secondary caries. The in vitro and bacterial culture experiments proved that L-arginine was released in a sustained way from MSNs and diffused out from the dental adhesive, effectively contributing to the reduction of the bacterial strains Streptococcus mutans and Lactobacillus casei. Furthermore, the mechanical and bonding properties of the dental adhesive did not change significantly after the incorporation of L-arginine-containing MSNs. These results are yielding glimmers of promise for the cost-effective prevention of secondary caries.


Assuntos
Cárie Dentária , Nanopartículas , Humanos , Dióxido de Silício , Cárie Dentária/prevenção & controle , Arginina , Streptococcus mutans , Cimentos Dentários/farmacologia
19.
Sci Rep ; 12(1): 20154, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418431

RESUMO

Understanding the responses of insect herbivores to plant chemical defences is pivotal for the management of crops and pests. However, the mechanisms of interaction are not entirely understood. In this study, we compared the whole transcriptome gene expression of the aphid Macrosiphum euphorbiae grown on two different varieties of tomato that differ in their inducible chemical defences. We used two isogenic lines of tomato with a shared genetic background that only differ in the presence of type IV glandular trichomes and their associated acylsucrose excretions. This works also reports a de novo transcriptome of the aphid M. euphorbiae. Subsequently, we identified a unique and distinct gene expression profile for the first time corresponding to aphid´s exposure to type IV glandular trichomes and acylsugars. The analysis of the aphid transcriptome shows that tomato glandular trichomes and their associated secretions are highly efficient in triggering stress-related responses in the aphid, and demonstrating that their role in plant defence goes beyond the physical impediment of herbivore activity. Some of the differentially expressed genes were associated with carbohydrate, lipid and xenobiotic metabolisms, immune system, oxidative stress response and hormone biosynthesis pathways. Also, the observed responses are compatible with a starvation syndrome. The transcriptome analysis puts forward a wide range of genes involved in the synthesis and regulation of detoxification enzymes that reveal important underlying mechanisms in the interaction of the aphid with its host plant and provides a valuable genomic resource for future study of biological processes at the molecular level using this aphid.


Assuntos
Afídeos , Solanum lycopersicum , Animais , Afídeos/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Tricomas/genética , Perfilação da Expressão Gênica , Herbivoria
20.
Sci Rep ; 12(1): 18933, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344608

RESUMO

The lack of safe drinking water affects communities in low-to-medium-income countries most. This barrier can be overcome by using sustainable point-of-use water treatments. Solar energy has been used to disinfect water for decades, and several efforts have been made to optimise the standard procedure of solar water disinfection (SODIS process). However, the Health Impact Assessment of implementing advanced technologies in the field is also a critical step in evaluating the success of the optimisation. This work reports a sustainable scaling-up of SODIS from standard 2 L bottles to 25 L transparent jerrycans (TJC) and a 12-month field implementation in four sites of Tigray in Ethiopia, where 80.5% of the population lives without reliable access to safe drinking water and whose initial baseline average rate of diarrhoeal disease in children under 5 years was 13.5%. The UVA dose required for 3-log reduction of E. coli was always lower than the minimum UVA daily dose received in Tigray (9411 ± 55 Wh/m2). Results confirmed a similar decrease in cases of diarrhoea in children in the implementation (25 L PET TJC) and control (2 L PET bottles) groups, supporting the feasibility of increasing the volume of the SODIS water containers to produce safer drinking water with a sustainable and user-friendly process.


Assuntos
Água Potável , Purificação da Água , Criança , Humanos , Pré-Escolar , Desinfecção/métodos , Escherichia coli , Etiópia , Luz Solar , Purificação da Água/métodos , Diarreia/epidemiologia , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...